NAME

gvgen - generate graphs

SYNOPSIS

$-\mathbf{M} x, y][-\mathbf{p} n][-\mathbf{r} x, y][-\mathbf{R} x][-\mathbf{s} n][-\mathbf{S} n][-\mathbf{S} n, d][-\mathbf{t} n][-\mathbf{t} d, n][-\mathbf{T} x, y][-\mathbf{T} x, y, u, v][-\mathbf{w} n][-\mathbf{n}$ prefix] [-Nname] [-ooutfile]

DESCRIPTION

gvgen generates a variety of simple, regularly-structured abstract graphs.

OPTIONS

The following options are supported:
-c $n \quad$ Generate a cycle with n vertices and edges.
$-\mathbf{C} x, y$ Generate an x by y cylinder. This will have $x^{*} y$ vertices and $2 * x * y-y$ edges.
$-\mathbf{g} / \mathbf{f}] x, y$
Generate an x by y grid. If \mathbf{f} is given, the grid is folded, with an edge attaching each pair of opposing corner vertices. This will have $x^{*} y$ vertices and $2 * x * y-y-x$ edges if unfolded and $2 * x * y-y-$ $x+2$ edges if folded.
-G [f] $]$, y
Generate an x by y partial grid. If \mathbf{f} is given, the grid is folded, with an edge attaching each pair of opposing corner vertices. This will have $x^{*} y$ vertices.
$-\mathbf{h} n \quad$ Generate a hypercube of degree n. This will have $2^{\wedge} n$ vertices and $n^{*} 2^{\wedge}(n-1)$ edges.
$-\mathbf{k} n \quad$ Generate a complete graph on n vertices with $n^{*}(n-1) / 2$ edges.
-b x, y Generate a complete x by y bipartite graph. This will have $x+y$ vertices and $x * y$ edges.
-B x, y Generate an x by y ball, i.e., an x by y cylinder with two "cap" nodes closing the ends. This will have $x * y+2$ vertices and $2 * x * y+y$ edges.
$-\mathbf{m} n$ Generate a triangular mesh with n vertices on a side. This will have $(n+1) * n / 2$ vertices and $3 *(n-1) * n / 2$ edges.

- $\mathbf{M} x, y$ Generate an x by y Moebius strip. This will have $x^{*} y$ vertices and $2 * x * y-y$ edges.
-p $n \quad$ Generate a path on n vertices. This will have $n-l$ edges.
-r x, y Generate a random graph. The number of vertices will be the largest value of the form $2^{\wedge} n-1$ less than or equal to x. Larger values of y increase the density of the graph.
- $\mathbf{R} x \quad$ Generate a random rooted tree on x vertices.
-s $n \quad$ Generate a star on n vertices. This will have $n-1$ edges.
-S $n \quad$ Generate a Sierpinski graph of order n. This will have $3^{*}\left(3^{\wedge}(n-1)+1\right) / 2$ vertices and $3^{\wedge} n$ edges.
-S n, d Generate a d-dimensional Sierpinski graph of order n. At present, d must be 2 or 3 . For d equal to 3 , there will be $4^{*}\left(4^{\wedge}(n-1)+1\right) / 2$ vertices and $6 * 4^{\wedge}(n-1)$ edges.
$-\mathbf{t} n \quad$ Generate a binary tree of height n. This will have $2^{\wedge} n-1$ vertices and $2^{\wedge} n-2$ edges.
-t $h, n \quad$ Generate a n-ary tree of height h.
-T x, y
-T x, y, u, v
Generate an x by y torus. This will have $x^{*} y$ vertices and $2 x^{*} x^{*} y$ edges. If u and v are given, they specify twists of that amount in the horizontal and vertical directions, respectively.
$-\mathbf{w} n \quad$ Generate a path on n vertices. This will have $n-1$ edges.
$-\mathbf{i} n \quad$ Generate n graphs of the requested type. At present, only available if the $\mathbf{- R}$ flag is used.

-n prefix

Normally, integers are used as node names. If prefix is specified, this will be prepended to the integer to create the name.
-N name
Use name as the name of the graph. By default, the graph is anonymous.
-o outfile
If specified, the generated graph is written into the file outfile. Otherwise, the graph is written to standard out.
-d Make the generated graph directed.
-v Verbose output.
-? Print usage information.

EXIT STATUS

gvgen exits with 0 on successful completion, and exits with 1 if given an ill-formed or incorrect flag, or if the specified output file could not be opened.

AUTHOR

Emden R. Gansner erg@research.att.com

SEE ALSO

$\operatorname{gc}(1), \operatorname{acyclic}(1), \operatorname{gvpr}(1), \operatorname{gvcolor}(1), \operatorname{ccomps}(1), \operatorname{sccmap}(1), \operatorname{tred}(1)$, libgraph(3)

